
Introduction to Graph Neural Networks

Mahdi Mastani

27 May 2025

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 1 / 36



Graph Representation and Encoding

A graph consists of:
Graph Structure
Node Embeddings
Edge Embeddings
Degree Matrix

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 2 / 36



Common Tasks for Graphs

Node
Classification
Link Prediction
Graph
Classification
Community
Detection
Graph
Generation

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 3 / 36



Key Properties of Graph Neural Networks

Generalization: The ability to apply learned models to graphs of
different sizes and topologies.
Scalability: The architecture should be efficient enough to handle
large graphs with millions of nodes and edges.
Permutation equivariance: The model should produce the same
output regardless of the ordering of the nodes and edges in the input
graph.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 4 / 36



Permutation Equivariance in Graphs

Permutation matrix: A permutation matrix P ∈ {0, 1}n×n is a
binary square matrix with exactly one entry of 1 in each row and
column. It represents a reordering of elements.

P =

0 0 1
1 0 0
0 1 0



When position (i, j) of the permutation matrix is set to one, it
indicates that node i will become node j after the permutation.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 5 / 36



Indexing and Permutation Effects

Changing node indexing in a graph requires transforming the data
accordingly.
Pre-multiplying by P reorders the rows (used for node features).
Post-multiplying by P⊤ reorders the columns (used for graph
structure).
The operations to map between indexings:

X′ = PX, A′ = PAP⊤

Conclusion: Any graph processing model should remain invariant to
these permutations:

Pŷ(X,A) = ŷ(X′,A′)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 6 / 36



Neural Networks

MLP:

CNN:

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 7 / 36



From CNNs to GNNs
How CNNs Work

CNNs operate on grid-structured data (like images).
Use local filters (kernels) to scan spatially arranged data.
Employ weight sharing and local connectivity to capture local
patterns.

h(l+1)
i = σ

∑
j

W(l)
j h(l)

j


Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 8 / 36



Why CNNs Are Not Suitable for Graphs

Graphs are non-Euclidean: no fixed node order or grid structure.
Nodes may have varying numbers of neighbors.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 9 / 36



GNN Message Passing - Neighborhood Aggregation

Undirected Graph Update Rule for Node
Embedding

Step 1: Aggregate neighbors

Step 2: Add self-loop

Update rule: h(l+1)
i = σ

h(l)
i W(l)

0 +
∑
j∈Ni

1
cij

h(l)
j W(l)

1


Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 10 / 36



Simple Message-Passing Neural Network

Algorithm 1 Simple message-passing neural network
Require: Undirected graph G = (V, E)

Initial node embeddings {h(0)
n = xn}

Aggregate(·) function
Update(·, ·) function

Ensure: Final node embeddings {h(L)
n }

1: // Iterative message-passing
2: for l ∈ {0, . . . , L− 1} do
3: z(l)n ← Aggregate

({
h(l)

m : m ∈ N (n)
})

4: h(l+1)
n ← Update

(
h(l)

n , z(l)n
)

5: end for
6: return {h(L)

n }

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 11 / 36



Aggregator and Update Functions in GNNs

Aggregator Function:
Aggregator must be permutation invariant.
Options:

Sum: Adds up neighbor features; sensitive to node degree.
Mean: Computes the average of neighbor features.
Max: Captures the most prominent signal per feature dimension.

Update Function:
Update function should preserve or enhance node representations.
Typically a neural network (e.g., MLP or linear layer).
Can include residual connections or batch normalization.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 12 / 36



Building GCN Step-by-Step

Step 1: Neighborhood Aggregation

Update rule: h(l+1)
i = σ

h(l)
i W(l)

0 +
∑
j∈Ni

1
cij

h(l)
j W(l)

1



Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 13 / 36



Building GCN Step-by-Step
if we set Wl

0 = Wl
1 = Wl (Shared weight matrix):

h(l+1)
i = σ

h(l)
i W(l) +

∑
j∈Ni

1
cij

h(l)
j W(l)


how about cij ?

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 13 / 36



Building GCN Step-by-Step

use Kipf normalization cij =
√

didj

h(l+1)
i = σ

h(l)
i W(l) +

∑
j∈Ni

1√
didj

h(l)
j W(l)



Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 13 / 36



Translate to Graph Input

h(l+1)
i = σ

h(l)
i W(l) +

∑
j∈Ni

1√
didj

h(l)
j W(l)


Matrix form:

H(l+1) = σ
(

H(l)W(l) + D−1/2AD−1/2H(l)W(l)
)

If set Â = I + D−1/2AD−1/2 we have:

H(l+1) = σ
(

ÂH(l)W(l)
)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 14 / 36



L-layer GCN
L-layer Graph convolutional networks (GCNs):

H(1) = F(X,A,W(1)) = σ
(

ÂXW(1)
)

H(2) = F(H(1),A,W(2)) = σ
(

ÂH(1)W(2)
)

... =
...

H(L) = F(H(L−1),A,W(L)) = σ
(

ÂH(L−1)W(L)
)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 15 / 36



From Fixed to Learnable Coefficients

So far, we discussed using fixed normalization coefficients 1
cij

, such as:

Uniform (unweighted average)
Degree-based normalization (e.g., 1√

didj
)

However, these do not adapt based on node features or context.
Can we make these coefficients learnable instead?

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 16 / 36



Graph Attention Layer - Overview

Goal: Compute hidden representations for each node by attending over its
neighbors using self-attention.
Key Properties:

Efficient and parallelizable across node-neighbor pairs.
Supports nodes with varying degrees using adaptive neighbor weights.

Input features: h = {h⃗1, h⃗2, . . . , h⃗n}, h⃗i ∈ RF

Shared linear transformation: W ∈ RF′×F

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 17 / 36



Self-Attention Mechanism in GAT

Step 1: Linear Transformation

h⃗′i = Wh⃗i ∀i ∈ V

Step 2: Compute Attention Coefficients

sij = a(⃗h′i, h⃗′j)

Where a : RF′ × RF′ → R

Popular Choices for Attention Scoring:
Dot Product: a(⃗h′i, h⃗′j) = (⃗h′i)⊤h⃗′j
Additive:

a(⃗h′i, h⃗′j) = LeakyReLU(a⊤ [⃗h′i∥h⃗′j])

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 18 / 36



Attention Score Matrix S

The matrix S ∈ Rn×n contains raw attention scores: sij = a(⃗h′i, h⃗′j)
These scores indicate the importance of node j to node i based on
transformed features.

So:

Hnew = σ(S.H′)

Why not apply S directly?
S is a matrix of unnormalized scores — directly using it can lead to
unstable and unbounded outputs.

If we set s′ij =
exp(sij)∑n

i=1 exp(sik)
will have:

Hnew = σ(S′.H′)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 19 / 36



Attention Score Matrix S

It does not respect the graph structure — it includes all node-to-node
interactions unless masked.
It may cause unrelated nodes to influence each other.
Mask scores outside neighborhood Ni

sij
′ =

exp(sij)∑
k∈Ni∪i exp(sik)

Resulting matrix S is row-stochastic (i.e., values sum to 1 per row)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 20 / 36



Masked Attention in Matrix Form

Final Attention Mechanism with Graph Structure:
M = A+I
Softmax over masked positions requires attention scores to be set to
−∞ for excluded elements
Zero values in M set to −∞
Apply masking before softmax:

S̃ = softmax (S⊙M)

⊙: element-wise multiplication (masking)
Final Update Rule:

Hnew = σ
(

S̃H′
)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 21 / 36



GAT

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 22 / 36



Training GNNs: Supervised and Unsupervised Settings

What if we don’t have any labels? (Unsupervised Learning)
Use node features and graph structure to learn useful representations.

One possible idea: ”Similar” nodes should have similar embeddings.

min
W
L =

∑
u,v

CE(yu,v, ⟨⃗hv, h⃗u⟩)

yu,v = 1 if node u and v are similar
⟨⃗hv, h⃗u⟩: similarity of embeddings

Node Similarity can be:
edges
Random walk distance

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 23 / 36



Supervised GNN Training: Node Classification

Task: Predict a label yi for each node i ∈ V
Approach:

Use GNN to compute node embeddings h⃗i

Apply a softmax classifier on each embedding

Loss Function: Cross-Entropy

L = −
∑

i∈Vlabeled

C∑
c=1

yic log ŷic

where ŷic = softmax(Wh⃗i)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 24 / 36



Supervised GNN Training: Graph Classification

Task: Predict a label for the entire graph G
Approach:

Compute node embeddings h⃗v

Aggregate (e.g., mean, sum, attention) to form graph embedding h⃗G

Apply a classifier on h⃗G

Loss Function: Cross-Entropy (for classification)

L = −
∑
G∈D

C∑
c=1

yGc log ŷGc

where ŷGc = softmax(Wh⃗G)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 25 / 36



Supervised GNN Training: Link Prediction

Task: Predict whether an edge exists between a node pair (u, v)
Approach:

Use GNN to compute embeddings h⃗u, h⃗v

Predict link score using dot product or MLP:

ŷuv = σ(⃗h⊤u h⃗v) or MLP([⃗hu∥h⃗v])

Loss Function: Binary Cross-Entropy

L = −
∑
(u,v)

yuv log ŷuv + (1− yuv) log(1− ŷuv)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 26 / 36



Visualization of Tasks

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 27 / 36



Semi-Supervised Learning

Definition: Learning from a dataset that contains both labeled and
unlabeled examples.
Occurs When:

Labels are expensive or time-consuming to obtain.
Large amounts of raw (unlabeled) data are available.

Objective:
Use unlabeled data to improve generalization.
Learn representations that respect both labels and data structure.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 28 / 36



Semi-Supervised Learning in Graphs
Problem Setup:

A graph G = (V, E) with node features.
Only a subset of nodes VL ⊂ V are labeled.

Key Idea:
Use both graph structure and node features to propagate labels.
Unlabeled nodes benefit from neighboring labeled information via
message passing.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 29 / 36



Inductive vs. Transductive Learning in GNNs

Inductive Learning:
Learns a general rule from labeled training data that maps inputs to
outputs.
Once trained, the model can be applied to new, unseen data.
This is the default in most machine learning settings.

Transductive Learning:
Considers both labeled and unlabeled data simultaneously during
training.
Does not learn a reusable rule — instead directly infers labels for the
current test nodes.
Can exploit patterns in unlabeled data, but must be retrained if new
data are added.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 30 / 36



Inductive vs. Transductive Learning in GNNs

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 31 / 36



Training Large Graphs in Batches

Challenge: Large graphs may not fit into memory, making full-graph
training impractical.
Mini-batch Training Strategies:

Layer-wise sampling: Sample fixed-size sets of neighbors per GNN
layer.
Graph partitioning: Cluster the original graph into disjoint subsets
of nodes.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 32 / 36



Graph Partitioning

Goal: Break down a large graph into smaller, more manageable subgraphs
for mini-batch training.
How it works:

Cluster the original graph into disjoint subsets of nodes.
Each subset becomes a smaller subgraph (a ”partition”) with many
internal edges.

Mini-batch Strategy:
Treat each partition as a separate training batch.
Optionally combine multiple partitions in a batch, reintroducing
inter-partition edges if needed.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 33 / 36



Graph Partitioning

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 34 / 36



Over-Smoothing in GNNs

Problem:
After multiple layers of message passing, node embeddings tend to
become very similar.
This phenomenon is called over-smoothing.
It limits the expressive power of deep GNNs.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 35 / 36



Over-Smoothing in GNNs

Why is it bad?
Node features lose discriminative power.
The model can no longer distinguish between nodes with different
labels or roles.
This limits the depth of the network.

How to mitigate it:
Residual connections: Preserve original features and stabilize
training.
Jumping Knowledge connections: Let the output layer aggregate
features from all earlier layers.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 36 / 36


	Notations
	Key Properties of Graph Neural Networks

