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Graph Representation and Encoding

A graph consists of:

Graph Structure
Node Embeddings
Edge Embeddings
Degree Matrix

Adjacency
matrix, A
N
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Common Tasks for Graphs

o Node
Classification

o Link Prediction

o Graph
Classification

o Community
Detection

o Graph
Generation
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Key Properties of Graph Neural Networks

o Generalization: The ability to apply learned models to graphs of
different sizes and topologies.

@ Scalability: The architecture should be efficient enough to handle
large graphs with millions of nodes and edges.

o Permutation equivariance: The model should produce the same
output regardless of the ordering of the nodes and edges in the input

graph.
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Permutation Equivariance in Graphs

e Permutation matrix: A permutation matrix P € {0,1}"*" is a
binary square matrix with exactly one entry of 1 in each row and
column. It represents a reordering of elements.

0 01
P=11 00
010

@ When position (i, j) of the permutation matrix is set to one, it
indicates that node i will become node j after the permutation.
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Indexing and Permutation Effects

@ Changing node indexing in a graph requires transforming the data
accordingly.
@ Pre-multiplying by P reorders the rows (used for node features).

@ Post-multiplying by PT reorders the columns (used for graph
structure).

@ The operations to map between indexings:
X =PX, A =PAP'

@ Conclusion: Any graph processing model should remain invariant to

these permutations:
Py(X, A) = (X, A))
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Neural Networks

Hidden Layers

o MLP:

o CNN:

@ convolution —+ ReLU
© max pooling

© tully connected -+ ReLU
© softmax actvation
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From CNNs to GNNs

How CNNs Work
o CNNs operate on grid-structured data (like images).
@ Use local filters (kernels) to scan spatially arranged data.

@ Employ weight sharing and local connectivity to capture local
patterns.

¥

NN P

(1) _ OO
hi ™ =o ij h;
J
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Why CNNs Are Not Suitable for Graphs

@ Graphs are non-Euclidean: no fixed node order or grid structure.

@ Nodes may have varying numbers of neighbors.

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 9/36



GNN Message Passing - Neighborhood Aggregation

@) O @)
O ® O/ \O
Update Rule for Node
Embedding

Undirected Graph

o Step 1: Aggregate neighbors
o Step 2: Add self-loop

1

Update rule: hl(.’+1) — hl(’)wg’) + —hj(-l)ng)
Z .
jen:
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Simple Message-Passing Neural Network

Algorithm 1 Simple message-passing neural network
Require: Undirected graph G = (V, &)
Initial node embeddings {hg,o) = Xp}
Aggregate(-) function
Update(+, -) function
Ensure: Final node embeddings {hg,L)}

[y

. // Iterative message-passing
: for 1€ {0,...,L—1} do

2, Aggregate ({h}) - m < N (n) )
hf,lH) < Update <h$1l),2571)>

end for

return {th)}

L

o o
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Aggregator and Update Functions in GNNs

Aggregator Function:

o Aggregator must be permutation invariant.
o Options:
e Sum: Adds up neighbor features; sensitive to node degree.

e Mean: Computes the average of neighbor features.
e Max: Captures the most prominent signal per feature dimension.

Update Function:
@ Update function should preserve or enhance node representations.
e Typically a neural network (e.g., MLP or linear layer).

@ Can include residual connections or batch normalization.
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Building GCN Step-by-Step

Step 1: Neighborhood Aggregation

0. g°
0 0/8\0

Update rule: hl(.IH) -0 (hg’)wg’) + Z l_hj(-/)ng))
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Building GCN Step-by-Step

if we set W), = W/ = W/ (Shared weight matrix):

(H1) Dvns(F 1 (Dns(r
hi ™ =o | hPWO + 3" —h w0

o
jen;

O\g/o
N .
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Building GCN Step-by-Step

use Kipf normalization c¢; = \/did;

" ( 3 v )
0\8/0
o o
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Translate to Graph Input

h{*) — o [ WO L hOwo
JEN; didj !

1

Matrix form:

HHD — (H(’>w(’) i Dfl/zADfl/szWm)
o Ifset A=1+D1/2AD1/2 we have:

H(HD — o (;\H(/)W(/)>
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L-layer GCN

L-layer Graph convolutional networks (GCNs):
HO = F(X, A, WD) = & (Z\xw(l))

H® — F(HO, A, W®) = & (;\H(l)w(z))

HO = FHED A, WD) = o (;\H(Lfl)W(L)>
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From Fixed to Learnable Coefficients

@ So far, we discussed using fixed normalization coefficients Ci such as:
ij

o Uniform (unweighted average)
o Degree-based normalization (e.g., —*=)

V/did;

@ However, these do not adapt based on node features or context.

@ Can we make these coefficients learnable instead?
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Graph Attention Layer - Overview

Goal: Compute hidden representations for each node by attending over its
neighbors using self-attention.

Key Properties:

Efficient and parallelizable across node-neighbor pairs.

Supports nodes with varying degrees using adaptive neighbor weights.

Input features: h = {Hl, o, ..., 71,,}7 h; € RF
Shared linear transformation: W € RF *F

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 17 /36



Self-Attention Mechanism in GAT

Step 1: Linear Transformation
r‘l: = Wﬁ, VieVy

Step 2: Compute Attention Coefficients

—

si = a(h}, b))

Where a: RF x RF 5 R

Popular Choices for Attention Scoring:
o Dot Product: a(f, h) = (H)"H,
o Additive:

a( ), i) = LeakyReLU(a" [H}|| H}])
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Attention Score Matrix S

—

@ The matrix S € R™*" contains raw attention scores: s; = a(//, /7;)

@ These scores indicate the importance of node j to node i based on
transformed features.

So:

H,ew = o(S.H)

Why not apply S directly?

@ S is a matrix of unnormalized scores — directly using it can lead to
unstable and unbounded outputs.

_ __exp(sy) ; :
o If we set s; = ST ep(sy Will have:

Hyew = o(S.H)
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Attention Score Matrix S

It does not respect the graph structure — it includes all node-to-node
interactions unless masked.

@ It may cause unrelated nodes to influence each other.

@ Mask scores outside neighborhood N;
s/ — exp(sy)
j —
2 ke <P (Sik)
@ Resulting matrix S is row-stochastic (i.e., values sum to 1 per row)

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 20/36



Masked Attention in Matrix Form

Final Attention Mechanism with Graph Structure:
o M = A+l

@ Softmax over masked positions requires attention scores to be set to
—oo for excluded elements

Zero values in M set to —o0

Apply masking before softmax:

S = softmax (S ® M)

@ ©: element-wise multiplication (masking)
Final Update Rule:
Huew = o (SH')

Mahdi Mastani Introduction to Graph Neural Networks 27 May 2025 21/36



softmax
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Training GNNs: Supervised and Unsupervised Settings

What if we don’t have any labels? (Unsupervised Learning)

@ Use node features and graph structure to learn useful representations.

@ One possible idea: "Similar” nodes should have similar embeddings.

min L= Z CE(Yu,v, (hv, hu))

u,v

e y,v=1if node uand v are similar
° (FV, HU): similarity of embeddings

e Node Similarity can be:

o edges
o Random walk distance
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Supervised GNN Training: Node Classification

Task: Predict a label y; for each node i € V
Approach:

@ Use GNN to compute node embeddings H,-

@ Apply a softmax classifier on each embedding

Loss Function: Cross-Entropy

C
L== ) > Yiclogfe

i€Viabeled €=1

where y;c = softmax(Wl_f,-)
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Supervised GNN Training: Graph Classification

Task: Predict a label for the entire graph G
Approach:
@ Compute node embeddings ﬁv
o Aggregate (e.g., mean, sum, attention) to form graph embedding he

@ Apply a classifier on EG

Loss Function: Cross-Entropy (for classification)

C
L=— Z Zchlogj\/Gc

GeD c=1

where V. = softmax(Wi_;G)
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Supervised GNN Training: Link Prediction

Task: Predict whether an edge exists between a node pair (u, v)
Approach:

@ Use GNN to compute embeddings Hu, HV
@ Predict link score using dot product or MLP:

Yy = o(hyhy) o MLP([h]|h])

Loss Function: Binary Cross-Entropy

L=-— Z Yuv10g Yuv + (1 = yuv) log(1 = Juv)
(u,v)
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Visualization of Tasks

Node classification
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Semi-Supervised Learning

Definition: Learning from a dataset that contains both labeled and
unlabeled examples.
Occurs When:

@ Labels are expensive or time-consuming to obtain.

@ Large amounts of raw (unlabeled) data are available.

Objective:
@ Use unlabeled data to improve generalization.

@ Learn representations that respect both labels and data structure.
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Semi-Supervised Learning in Graphs

Problem Setup:
e A graph G = (V, &) with node features.
@ Only a subset of nodes V; C V are labeled.

Key Idea:
@ Use both graph structure and node features to propagate labels.

@ Unlabeled nodes benefit from neighboring labeled information via
message passing.
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Inductive vs. Transductive Learning in GNNs

Inductive Learning:

@ Learns a general rule from labeled training data that maps inputs to
outputs.

@ Once trained, the model can be applied to new, unseen data.

@ This is the default in most machine learning settings.

Transductive Learning;:
@ Considers both labeled and unlabeled data simultaneously during
training.
@ Does not learn a reusable rule — instead directly infers labels for the
current test nodes.
@ Can exploit patterns in unlabeled data, but must be retrained if new
data are added.
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Inductive vs. Transductive Learning in GNNs

Inductive setting Transductive setting

2
N
1%

Test graph

Training graphs
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Training Large Graphs in Batches

Challenge: Large graphs may not fit into memory, making full-graph
training impractical.
Mini-batch Training Strategies:
o Layer-wise sampling: Sample fixed-size sets of neighbors per GNN
layer.
@ Graph partitioning: Cluster the original graph into disjoint subsets
of nodes.
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Graph Partitioning

Goal: Break down a large graph into smaller, more manageable subgraphs
for mini-batch training.

How it works:

@ Cluster the original graph into disjoint subsets of nodes.

@ Each subset becomes a smaller subgraph (a "partition”) with many
internal edges.

Mini-batch Strategy:
@ Treat each partition as a separate training batch.

@ Optionally combine multiple partitions in a batch, reintroducing
inter-partition edges if needed.
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Graph Partitioning
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Over-Smoothing in GNNs

Problem:

@ After multiple layers of message passing, node embeddings tend to
become very similar.

@ This phenomenon is called over-smoothing.

@ It limits the expressive power of deep GNNs.

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN
Q © Node of interest Q o © Node of interest Q O Node of interest
R o © Receptive field o @ Receptive field e © Receptive field

O Other nodes O Other nodes O Other nodes
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Over-Smoothing in GNNs

Why is it bad?
@ Node features lose discriminative power.

@ The model can no longer distinguish between nodes with different
labels or roles.

@ This limits the depth of the network.

How to mitigate it:
@ Residual connections: Preserve original features and stabilize
training.
o Jumping Knowledge connections: Let the output layer aggregate
features from all earlier layers.
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